If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+14v+17=0
a = 1; b = 14; c = +17;
Δ = b2-4ac
Δ = 142-4·1·17
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-8\sqrt{2}}{2*1}=\frac{-14-8\sqrt{2}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+8\sqrt{2}}{2*1}=\frac{-14+8\sqrt{2}}{2} $
| X=3y=-2 | | y(y-1.5)=52 | | 12.25+x*1.06=19.08 | | m/9=29 | | 21=8n-n | | 42=9b-7 | | -q-3/2=-1 | | -8y=7-9 | | X.12+x-8=3+2x | | 8e−5=51 | | x*9=4 | | 8p=-10+10p | | 4(-3+x)=-56 | | -7p-6=43 | | 1/9=5/6-1/3m | | -10=10(a+5) | | 121/4+x/6/10=19.08 | | X.12x-8=3+2x | | -10k+2+10k=2 | | 4(-3y+1)+2y=-6y-4-4y | | 6(-5+7x)=222 | | (-1+14x)^5/3=3125 | | -z/6-17=-19 | | 50=6.25m+200 | | 0.50a-4=3-0.25a | | -1+8k=-33 | | 7(e-5)=-35+7e | | 3(-2)+y=-6 | | -16=v-6 | | 4(x+3)-5x+4=-4 | | 4k^2-24k-64=0 | | 6/27e=12 |